研究方向:
计算机视觉
人工智能算法
智能控制
主持或参加的科研项目:
主持国家自然科学基金1项,湖南省自然科学基金2项、湖南省教育厅优秀青年科研项目、重点项目各1项、湖南省教育厅教改项目2项,参与国家级自然科学基金项目5项。主持研发横向项目多项,有丰富的机器视觉和复杂工业过程智能控制领域项目开发经验。
教学:
《机器人及其控制》
《神经网络与深度学习》
《强化学习》
《数字图像处理》
《自动控制工程案例》
部分代表性论文:
Jiahong Jin, Dujie Liao, Lin Zhao*(通信作者), Marion S. Greene, Yu Sa, Heng Hong, Xin-Hua Hu*. Accurate Classification of Human CD4+ T, CD8+ T, and CD19+ B Cells Isolated from Splenocytes by Cross-Polarized Diffraction Image Pairs. Analytical Chemistry, 2025, 97(3): 1603-1611. (中科院 SCI一区)
Lin Zhao, Youlin Zhang, Chengzhong Shi, Minhui Zhao, Jianhui Wu and Wen Li*. APNet: A Novel Anti-Perturbation Network for Robust Hyperspectral Image Classifcation against Adversarial Attacks. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14, Art no. 5534614. DOI: 10.1109/TGRS.2024.3467088. (中科院 SCI一区)
Lin Zhao, Jia Li, Wenqiang Luo, Er Ouyang, Jianhui Wu, Guoyun Zhang, Wujin Li. Purified Contrastive Learning With Global and Local Representation for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14, Art no. 5520414 (中科院 SCI一区)
Qiming Liao, Lin Zhao(共同一作), Wenqiang Luo, Xinping Li, Guoyun Zhang. Joint negative-positive-learning based sample reweighting for hyperspectral image classification with label noise. Pattern Recognition Letters, 2024, 183: 98-103 (中科院SCI三区)
Zhao L, Feng Y, Dai Y J, Wu J H*, Zhang G Y*. Progressive Contrastive Learning Based On Noisy Negatives Cleaning for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 2024, 21:1-5, Art no. 5504205, DOI: 10.1109/LGRS.2024.3373628.
Fang C H, Zhang G F, Li J, Li X P, Chen T F, Zhao L*(通信作者). Intelligent Agent for Hyperspectral Image Classification with Noisy Labels: A Deep Reinforcement Learning Framework. International Journal of Remote Sensing, 2024, 45(9), 2939-2964. (中科院SCI三区)
Ouyang E, Li B, Hu W, Zhang G, Zhao L*(通信作者), Wu J. When Multi-Granularity Meets Spatial-Spectral Attention: A Hybrid Transformer for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-18, Art no. 4401118 (中科院 SCI一区)
Zhao L, Zhou X, Lu X, Tong H, Fang H. Transformer-based reconstruction for Fourier ptychographic microscopy, IEEE Access, 2023, 11: 94536-94544 (中科院SCI三区)
He J, Zhao L(共同一作), Hu W, Zhang G, Wu J, Li X. TCM-Net: Mixed Global–Local Learning for Salient Object Detection in Optical Remote Sensing Images. Remote Sensing. 2023; 15(20):4977 (中科院SCI二区)
Shi C, Liao Q, Li X, Zhao L*(通信作者), Li W. Graph Guided Transformer: An Image-Based Global Learning Framework for Hyperspectral Image Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20:1-5 (中科院SCI三区)
Zhao L, Ouyang E, Tang J, Li B, Wu J, Zhang G. Domain transfer and difference-aware band weighting for object tracking in hyperspectral videos. International Journal of Remote Sensing, 2023, 44(4): 1115-1131 (中科院SCI三区)
吴健辉,何灿,何俊康,谢永芳,赵林(通信作者),张国云. FSNet:基于频率特性的烟雾图像分割网络. 控制理论与应用, 2023,40(04):702-712 (EI)
Zhao L, Tang L, Greene M S, Sa Y, Wang W, Jin J, ... Hu X. Deep Learning of Morphologic Correlations to Accurately Classify CD4+ and CD8+ T Cells by Diffraction Imaging Flow Cytometry. Analytical Chemistry, 2022, 94(3), 1567–1574 (中科院SCI一区)
Zhao L, Luo W, Liao Q, Chen S, Wu J. Hyperspectral Image Classification with Contrastive Self-Supervised Learning Under Limited Labeled Samples. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5, Art no.6008205 (中科院SCI二区)
Ouyang E, Wu J, Li B, Zhao L(通信作者), Hu W. Band Regrouping and Response-Level Fusion for End-to-End Hyperspectral Object Tracking. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5, Art no.6005805 (中科院SCI二区)
Li B, Ouyang E, Hu W, Zhang G, Zhao L(通信作者), Wu J. Multi-granularity Vision Transformer Via Semantic token for Hyperspectral Image Classification. International Journal of Remote Sensing, 2022, 43(17): 6538-6560 (中科院SCI三区)
赵林,李希,谢永芳,易嘉闻,吴健辉,胡文静. 基于自适应变量加权的汽油辛烷值预测方法. 控制与决策, 2022, 37(10): 2738-2744 (EI)
Liu L, Zhou X, Liao Q, Liao Q, Hu W, Zhao L(通信作者). Burst bubble recognition based on depth feature. In Proceedings of the 4th International Conference on Informatics Engineering & Information Science(ICIEIS2021), 12161:10-14, 2022 (EI)
Zhao L, Yi J, Li X, Hu W, Wu J, Zhang G. Compact band weighting module based on attention-driven for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9540-9552 (中科院SCI二区)
Qin Y, Tian P, Zhao L, Mutisya S, Jin J, Lu J, Hu X. Robustness of inverse solutions for radiative transfer parameters from light signals measured with different detection configurations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 274: 107883 (中科院SCI二区)
Tian P, Qin Y, Zhao L, Mutisya S, Jin J, Lu J, Hu X. Multiparameter spectrophotometry platform for turbid sample measurement by robust solutions of radiative transfer problems. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-10 (中科院SCI二区)
Wang W, Wen Y, Lu J, Zhao L, Safaa A, Hu X. Rapid classification of micron-sized particles of sphere, cylinders and ellipsoids by diffraction image parameters combined with scattered light intensity. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: 453-459. (中科院SCI二区)
Zhao L, Peng T, Xie Y, Yang C, Gui W, Zhao Y. Froth stereo visual feature extraction for the industrial flotation Process. Industrial & Engineering Chemistry Research, 2019, 58(31): 14510-14519 (中科院SCI二区)
Tu B, Kuang W, Shang Y, He D, Zhao L. A multi-view object tracking using triplet model. Journal of Visual Communication and Image Representation, 2019, 60: 64-68 (中科院SCI三区)
Zhao L, Peng T, Xie Y, Yang C, Gui W. Recognition of flooding and sinking conditions in flotation process using soft measurement of froth surface level and QTA. Chemometrics and Intelligent Laboratory Systems, 2017, 169: 45-52 (中科院SCI三区)
Zhao L, Peng T, Zhao Y, Peng X, Xie Y. Features Extraction of flotation froth based on equivalent binocular stereo vision. IFAC-PapersOnLine, 2016, 49(20): 90-95 (EI)
Zhao L, Peng T, Zhao L, Peng X, Zhao Y, Song Y. Fault condition recognition based on multi-scale texture features and embedding prior knowledge k-means for antimony flotation process. IFAC-PapersOnLine, 2015, 48(21): 864-870 (EI)
Peng X, Peng T, Zhao L, Song Y, Gui W. Working condition recognition based on an improved NGLDM and interval data-based classifier for the antimony roughing process. Minerals Engineering, 2016, 86: 1-9 (中科院SCI二区)
部分毕业学生情况: